STUDY OF THE SIMPLEST STATISTICAL
CHARACTERISTICS OF A TURBULENT FLOW
TEMPERATURE DISTRIBUTION

B. A. Kolovandin, A. A. Bulavko, UDC 532.517.4
Yu. M. Dmitrenko, and N, N, Luchko

The degeneracy of the temperature distribution in homogeneous nonisotropic turbulence is ex-
amined, The relations obtained are verified experimentally,

The mean square of the temperature fluctuations in homogeneous turbulence is described by the well-
known balance equation

de®

dt

-+ 124D, = 0, (1)

where D-t0=—1/6 (ARt), is a function characterizing the leveling of the temperature fluctuations. The equation
for Dy, is easily obtained from the equation for the two-point correlation of temperature fluctuations (cf., e.g.,
Corrsin [1]). This equation can be written in the form
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, 2 1/2
10~ 1//3: (St T S—Sx) D;,Dyy =0, 2)
where Dl11/02=—1/5 (ARy), is the vorticity of the field of velocity fluctuations, In this equation the coefficients
St and Sy, are dimensionless quantities composed of derivatives with respect to £ of two-point temperature
and velocity correlations:
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Physically, the first term in Eq. (2) represents the total time rate of change of Dy, the second represents
diffusion, and the third, the leveling of D¢, (dissipation) as the result of the thermal diffusivity of the medium,

4

We note that for homogeneous isotropic turbulence Egs. (1) and (2) go over into the equations of an iso-
tropic temperature field (the second of these can be obtained from Corrsin's equation [1])
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where iy —= ——5—, &y -== 2 are, respectively, the squares of the scales of the degeneracy of the turbulent

10 uy)
fluctuations of the temperature and velocity. The coefficients (3) and (4) have the form
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where uy is the x; component of the velocity fluctuation.

The validity of Egs. (1) and (2) as a description of the temperature distribution for homogeneous turbu-
lence is determined in the last analysis by the values of the coefficients S and Sy as functions of the parame-
ters which determine the temperature distribution for homogeneous turbulence, i.e., on the local Reynolds and
Péclet numbers: :

Re:_tﬂz_;_, Pl = g
v “w
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where [ , and [ { are certain length scales characterizing the velocity and temperature fields.

As far as we know there are no published reports of direct measurements of S and S,;; we know only of
~ the paper by Yaglom [2] where Sé" is estimated on the basis of the Betchov inequality.

We estimate the values of S; and S., on the basis of the known laws of degeneracy of a uniform isotropic
temperature field.

For the final stage of degeneracy of the temperature field (Pl «1) the diffusion term in Eq. (2*) can be
neglected. Thus we have

24 127 =0,
dt A
d ,» 10 «  P3 1
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If we assume that
2 *
Sy Pi - L = Stps = const,
R, ¢
the system of equations has the solution
- 5 .
£ (\)'/® = const, where B = — & —1.
(A const, where § 18,3 t‘

Since Corrsin's invariant [1] is valid in the final stage of degeneracy of a uniform isotropic temperature
field '
2 3.2 = const,

we must set f = , which gives

wlw

Srpis=6V3. (6)

Thus for very small values of the Péclet number the coefficient s{‘DIS is a universal constant,and, consequently,
S* is a function of the Reynolds, Péclet, and Prandtl numberst :

S, =6}V3¢ R’; . 0
p;

We now turn to the limiting case of very large values of the local Péclet number. In this case the diffu-
sion transport and "dissipation" in Eq. (2*) are of the same order of magnitude. Introducing the length scale
of the dissipation of the temperature field

+We derived a similar result earlier [3] for the corresponding coefficient S%DIS of the velocity field.
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we write Eqs. (1) and (2) in the form
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If we assume the validity of the relation
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the system of equations has the following solution:
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Thus the well-known Corrsin solution [1] has been obtained, from which we find 8 =1/3. This means
that the following relation holds for large Péclet numbers:
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Hence there follows a relation between St and S*%
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Thus it has been shown that the coefficients in Eq. (2*) are not universal constants either for P11« 1 or
P11,

However, the combinations (6) and (8) of these coefficients and the Reynolds and Péclet numbers are
universal constants in these limiting cases. The results obtained are valid for a uniform isotropic tempera-
ture field. Unfortunately, such an analysis is not possible for a uniform nonisotropic field, since the laws of
degeneracy of uniform nonisotropic fields are not known. Therefore, we determine the values of Sppis and
STDIF experimentally for homogeneous nonisotropic turbulence,

We write the expressions for Spprg and Spprp explicitly in terms of the correlation functions

313 £(A:D))y 9)
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Using this notation, Egs. (1) and (2) take the form
d - g
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d (g, 5 (2 &
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It is desirable to compare the asymptotic expressions (8) for Sppig and Syprr with the experimental
values found in a uniform nonisotropic temperature field over a wide range of Reynolds and Péclet numbers.
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Fig. 1. Scales of temperature and velocity fields
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Fig. 4

Fig. 4. Mixed two-point third-order correlation coefficient of velocity and temperature
for U=8 m/sec. '

Fig. 5. Diffusion coefficient of temperature field and F, as functions of Péclet number,

The experiment was performed for the simplest form of homogeneous nonisotropic turbulence — axisym-
metric turbulence. The results of this experiment for the characteristics of the velocity field are given in [3].
A uniform temperature distribution was obtained by using a screen with a 40 x40 mm square mesh made of
Constantan wire and heated by an electric current, The mean-square value of the temperature fluctuations in
the working region was 0.2-0.3°C. The experiment was performed with standard apparatus made by the DISA
company (hot-wire anemometers with high-pass and low-pass filters, linearizers, an effective value voltmeter),
resistance thermometers, and apparatus to transform and feed analog signals into an analog computer. The
apparatus is described in detail in [4].

It follows from Egs. (9) and (10) that the experimental determination of Sppig and STpry requires the
measurement of two-point temperature and velocity correlation functions in three directions and the caleula-

tion of appropriate derivatives up to and including the fourth order. To avoid repeated calibrations of the ap-
paratus the normalized correlation functions, that is, the correlation coefficients, were measured. In measuring
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the transverse correlation coefficients,transducers were placed at two points in space and one of them was
displaced in the £, and £ 3 directions (transverse coordinates). The initial distance between transducers was

measured with a microscope. Information on velocity and temperature fluctuations was fed into the analog
computer automatically for the calculation of the corresponding correlations. The hypothesis of "frozen turbu-
lence" was used to calculate the longitudinal correlation coefficients pt' (£4, £ 5; i.e., the space—time coef-
ficients pitt (1, £ 9) rather than the spatial coefficients were measured. The step in the longitudinal coordinate

was assigned by using a sampling generator §1=~% =Ut, where f is the frequency of the sampling and 7 is the

difference in time, For a more accurate measurement of two-point temperature correlations the amplitude -
frequency and phase characteristics of the resistance thermometers were flattened.

The measurement of two-point cross-correlation coefficients pj, i+1(y) is an interesting procedural
problem, since in this case the hot-wire anemometer output signal depends on both the temperature andvelocity
fluctuations. The output signals of a hot-wire anemometer and a resistance thermometer with their transducers
located in the immediate vicinity of one another have the form I; =ou;—Bt+m, I,=yt+k, I3=cu; +m, where 7,
is the hot-wire anemometer signal in a nonisothermal flow,, is the resistance thermometer signal, 74 is the
hot-wire anemometer signal in an isothermal flow, and &, B, y are sensitivity coefficients; m and k are, re-
spectively, the hot-wire anemometer and resistance thermometer noise. If it is assumed that the noise and
useful signals are not correlated, the measured correlation coefficient can be written in the form
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For a large signal-to-noise ratio the effect of instrument noise can be neglected. Then the preceding relation
can be rewritten in the form

AT

Vi ;i
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An extra measurement of p {2(r) is performed to calculate py tt(r) In doing this only the output signal of the
resistance thermometer is processed. The extra measured function pti(r) corresponds to the function ap-
pearing in Eq. (13) if the resistance thermometer and the hot-wire anemometer reproduce the temperature
fluctuations spectrum identically. The extent of the reproduction of the fluctuations spectrum was estimated by
the agreement of the functions ptt(r) measured by the hot-wire anemometer and the resistance thermometer,

Agreement was achieved by flattening the amplitude —frequency and phase characteristics of the resistance
thermometer and the hot-wire anemometer.

The derivatives of the correlation functions were calculated by the numerical differentiation formulas for
four equally spaced points. The volume of information over which the averaging was performed was chosen so
that the statistical error of the calculation of a derivative was no more than 5%. As a rule, from 10° o 2. 10°
samplings were required. The time step was selected according to the width of the signal spectrum.

The experimental results are given in Figs, 1-5. The correlation coefficients were measured at 16 points,
which was sufficient for the calculation of derivatives with respect to £ up to and including the fourth order.
Using the values obtained for Dy and the root-mean-square values of the temperature fluctuations, the values of
the microscale of the temperature field were caleulated:

VE
t = Dtl/E‘ .
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This characteristic is shown in Fig, 1. The figure also shows the curve for the microscale of the velocity
field
. q
;"u = —[T;/T—
taken from [3]1. E should be noted that the ratio of the squares of the microscales of the velocity and tempera-
ture fields is practically constant, which follows, in particular, from the exact solutions of von Kdrman and
Howarth [5] and Corrsin [1] for isotropic fields.

Figure 2 shows the range of variation of microscale Reynolds and Péclet numbers: R) =qAy/v, Pa =
art/n.

The curve of Fig. 3 shows that Sppyg is a function of the Péclet number and that the values of this func-
tion are very far from the value STprg=6v3 obtained for Pj«1, which clearly is due to the lack of isotropy.
The accuracy of the calculation of the statistical coefficient Sppjg is characterized by a mean-square error of
129, The advantage of expressing the error in this way is that the mean-square error has a quite definite value
of the confidence coefficient of 0.68, and twice the mean-square error, a value of 0.95. Keeping in mind the
range of Péclet numbers involved in the present experiment, the experimental results are extended only to a
verification of Eqs. (8), (9), and (10).

We calculated the macroscale Ly of the temperature field by using the value of the vorticity D; and the
magnitudes of the fluctuations of velocity g2 and temperature t2 Figure 1 shows L; and the macroscale of the
velocity field

L — 9
“ WD,
as functions of the flow velocity. The figure shows that the macroscales increase with increasing flow velocity,
approaching certain asymptotes, while the ratio of the scales remains practically constant. This result is also
known as a consequence of the laws of degeneracy of isotropic turbulence for very large Reynolds and Péclet
numbers (cf., e.g., Kolmogorov [6] and Corrsin [1]). '
The third-order derivatives of the correlation function _u_{tF must be determined to calculate the coeffi-

cient Spprp. If we consider the complete expression for this operator in components, it becomes clear that a
direct measurement of it using the apparatus mentioned above is impracticable. To simplify the operator
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we used the approximate expression of a homogeneous correlation tensor of the first rank for closely spaced

points given in [7]:
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By using this expression the coefficient (10) can be written in the form
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This coefficient was determined by measuring the two-point correlation coefficient p y,ttr (¢ B in addition to the
previously determined quantities.

In order to do this two transducers were placed at a working point in E’space with coordinates (0, 0, 0).
One of the transducers was part of the resistance thermometer system and was sensitive only to temperature
fluctuations. The transducer wires (5u for the hot-wire anemometer and 2p for the resistance thermometer)
were located at a distance of 200 p, i.e., practically at the point, since, for example, p wuy = 0.99 for £, =£,=
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0.2 mm, The simultaneous recording of the output signals of the thermometer and the hot-wire anemometer
are necessary for the calculation of pytt(7) by the method described above. The information from the ther-
mometer and the hot-wire anemometer was fed into the computer through two channels and the quantities
appearing in Eq. (13) were calculated. The results of the calculations were printed out. For example, Fig. 4
shows the correlation coefficient py;ttr (¢ ,) for Uy=8 m/sec. After determining pttr, the third derivative with
respect to £ ; was computed. Figure 5 shows the results of the calculation of ST with 2 mean-square error
of 12%. It is clear that this coefficient is a rapidly varying function of the Péclet number. Keeping in mind the
calculated values of Sppg (P1), the function (8) can be constructed. This function is shown in Fig. 5. The
figure shows the asymptotic value obtained analytically for uniform isotropic fields. As is clear from the
figure the function F, decreases with increasing Py. One can assume that F, tends to approach an asymptotic
value, However, in contrast with the corresponding function for the velocity field (cf. [3]) appreciably larger
values of Ry, than are reached in the experiment under consideration are required to verify the relation

Jim Py _1551./_3 (14)

with certainty. We note, however, that it is hardly possible to reach values of Ry, greater than 10* under labo-
ratory conditions of degenerate turbulence, Therefore, on the basis of the results presented above we assume
that Eq. (14) is actually satisfied for a uniform temperature field.

NOTATION

7:2, mean square of temperature fluctuations; v, kinematic viscosity; %, thermal diffusivity; g’, separation
vector of two points; A¢, Laplacian operator in g’ space; o =y /%, Prandt] number; G2 =Ujuj, kinetic energy of
turbulence; U, longltudlnal flow velocity; Ry = Ru(—S u)-ux + Ei spatial correlation of velocity fluctuations.
Indices: *, isotropy; 0, g =0,
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