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The degeneracy of the t e m p e r a t u r e  distr ibution in homogeneous nonisotropic turbulence is ex- 
amined. The re la t ions  obtained a re  ver i f ied  exper imental ly .  

The mean square  of the t empe ra tu r e  fluctuations in homogeneous turbulence is descr ibed  by the wel l -  
known balance equation 

dT" 
dz 'r 12• = O, (1) 

where  Dr0=-1/~ (ZkRt) ~ is a function charac te r iz ing  the leveling of the t empera tu re  fluctuations. The equation 
for I)t0 is eas i ly  obtained f rom the equation for  the two-point cor re la t ion  of t em p e ra tu r e  fluctuations (cf., e .g. ,  
Cor r s in  [1]). This equation can be wri t ten  in the fo rm 

dzd D~~ 5 ( �9 -]~7~- 2 ) r~1/2 
- -  a . , , u O  St-i- -~- Sz Die = 0 ,  (2) 

where  D g 2 = - l / s  (~Bu) 0 is the vor t ic i ty  of the field of veloci ty  fluctuations. In this equation the coefficients 
St and S~ a re  dimensionless  quantities composed of der ivat ives  with r e spec t  to ~" of two-point t empera tu re  
and velocity cor re la t ions :  

1 0 . (3 )  
S~= 5 l 3 Dt0(D~0) 1''2 ' 

S ~ . - -  3 1 z 3  z (AID,),'  (4)  

�9 5 Dto D~O'-' 

Physical ly,  the f i rs t  t e r m  in Eq. (2) r ep re sen t s  the total t ime r a t e  of change of Dt0 , the second r ep resen t s  
diffusion, and the third,  the leveling of Dr0 (dissipation) as the resu l t  of the the rmal  diffusivity of the medium. 

We note that for homogeneous isotropic turbulence Eqs. (1) and (2) go over  into the equations of an tso-  
t ropic  t e mpe ra tu r e  field (the second of these  can be obtained f rom CorrsinTs equation [1]) 

dT~ 
�9 h E  - - -  12• ~7 O, (1 * )  

d 
dr - i ?~ -  s,  ~ ~ s;. � 9  . . . .  0, (2*)  

where  Z? ~ D~0 ' /~,~ := D~- a r e ,  r espec t ive ly ,  the squares  of the scales  of the degeneracy of the turbulent  

fluctuations of the t empera tu re  and velocity.  The coefficients  (3) and (4) have the fo rm 
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(5) 

where  u 1 is the x 1 component  of  the veloci ty  fluctuation. 

The validi ty of  Eqs.  (1) and (2) as a descr ip t ion  of  the t e m p e r a t u r e  dis t r ibut ion for  homogeneous tu rbu-  
lence is de te rmined  in the l as t  ana lys i s  by the values  of the coeff icients  St and S~ as  functlons of  the p a r a m e -  
t e r s  which de te rmine  the t e m p e r a t u r e  distr ibution for  homogeneous turbulence ,  i .e . ,  on the local  Reynolds and 
P 6 c l e t  n u m b e r s :  

R e =  ql= Pl q l t  

where  l u and l t a r e  ce r t a in  length sca les  cha rac t e r i z ing  the veloci ty  and t e m p e r a t u r e  f ields.  

As fa r  as we k n o w t h e r e  a r e  no published r e p o r t s  of  d i rec t  m e a s u r e m e n t s  of S t and S~t; we know only of 
the paper  by Yaglom [2] where  S~ is e s t ima ted  on the bas i s  of the Betchov inequality. 

We es t ima te  the values  of  S t and S~ on the bas i s  of the known laws of degeneracy  of a un i form lsot ropic  
t e m p e r a t u r e  field. 

Fo r  the final s tage  of degeneracy  of the t e m p e r a t u r e  field (1~ <<1) the diffusion t e r m  in Eq. (2") can be 
neglected.  Thus we have 

d ~  + 12. - -  = o, 
dT ~ 

d ~.~.~(12 10 �9 P~ 1 ) z = 0 .  

S. P~' 1 * 
�9 - - -  = S r o z s  = const, 

Rx ~r 

If w e  a s s u m e  that 

the s y s t e m  of equations has the solution 

field 

# (~t2) 11~ = const, where ~ = 5 - -  St - -  1. 
18V3 

Since Corrsin~s invar iant  [1] is valid in the final s tage  of degeneracy  of a un i form isotropie  t e m p e r a t u r e  

2 
we must  set  ~ =  ~ , which gives 

~,~ = const, 

s;D~s = 6 V ~ .  (6) 

Thus for  v e r y  smal l  values  of the l ~ c l e t  number  the coefficient  S~DIS is a un iversa l  cons tan t ,and ,  consequently,  
S~t is a function of the Reynolds ,  P$clet ,  and Prandtl  numbers~  : 

s~. = 6VS- ~ R~, (7) 

We now turn to the l imit ing case  of v e r y  l a rge  values of the local  l ~c l e t  number .  In this case  the diffu- 
sion t r a n s p o r t  and "diss ipat ion" in Eq. (2*) a r e  of the s a m e  o rde r  of  magnitude.  Introducing the length sca le  
of the d iss ipat ion of the t e m p e r a t u r e  field 

t We der ived a s i m i l a r  r e s u l t  e a r l i e r  [3] for the co r respond ing  coefficient  SUDIS of the veloci ty  field. 
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w e  wri te  Eqs. (1) and (2) in the fo rm 

q~ 
L t -- . , 

• 

d - 
- - t  2 + 0, d, a2g--L V- = 

If we assume the validity of the relat ion 

PL t} 
--  . ~  O~ 

( ) * . 2 * P_~L 1 ]/-g PL 1 2 SrD~S - -  SrD1F - -  V 3  s; + - 2 - &  ~,._ " ~ ~ ~ = y 

where  

STmS=C PL 1 ,  SrD,P=__S; 1 PL 

the sys tem of equations has the following solution: 

PL I 
-- const, 

RL a 

t ~ L~/~ = const, 

where 

fJ--  12V-35 (@ S*TDIS-S;DIF- V'~ R---~-PL ) - 1 "  

Thus the well-known Corrs in  solution [1] has been obtained, f rom which we find fl = 1 / 3 .  This means 
that the following relat ion holds for large P6clet numbers :  

2 S r D I s - - S T m F - - | / - 3  1 PL F2 16l/3 �9 
3 ~ R~ 5 

Hence there  follows a relat ion between S~ and S~t 

2 s ~ + s ; -  16V5 .... R'Y-~ ~ + 1 / ~ -  1 (8) 
3 5 PL D1/2 LXL 

Thus it has been shown that the coefficients in Eq. (2") axe not universal  constants either for P1 << 1 or 
P l  >>1. 

However, the combinations (6) and (8) of these coefficients and the Reynolds and P6clet numbers  a re  
universal  constants in these limiting cases .  The resul t s  obtained a re  valid for a uniform isotropic t empera -  
ta re  field. Unfortunately, such an analysis is not possible for a uniform nonisotroptc field, since the laws of 
degeneracy of uniform nonisotropic fields a re  not known. Therefore ,  we determine the values of STDIS and 
STDI'F experimental ly for homogeneous nonisotropic turbulence.  

We wri te  the expressions for STDIS and STDIF explicitly in t e rms  of the corre la t ion  functions 

S r m s - -  3 l/F3- ~ (A~D')~ (9) 
5 02 ' 

( -  ~  
SrDir -- 1 ~ Og~ o (10) 

5 | /3-  • D~20 

Using this notation, Eqs. (1) and (2) take the form 

d ~ +  12-~-q . . . .  o, (11) 
d'~ L t 

d ( ~2q ) 5 2 ~Zq2 
V T  ( .-~-s~I~ --s~D,~) ...-LF o. dT k L t I 't- := (12) 

It is desir3ble to compare  the asymptot ic  express ions  (8) for STDIS and STDIF with the experimental  
values found in a uniform nonisotropic t empera tu re  field over a wide range of Reynolds and t~cle t  numbers.  
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Fig. 1. Scales of t e m p e r a t u r e  and veloci ty  f ields 
as  functions of  flow veloci ty:  a) m i c r o s c a l e s  in 
m m :  1) Xt; 2) Xu; 3) Xt/~u; b) m a c r o s c a l e s  in 
m:  1) A u ; 2 ) A t ; 3 )  L u / L  t. U, m / s e c .  
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Fig. 2. Reynolds and P ~ c l e t n u m -  
b e r s  as  functions of f low veloci ty.  
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Fig. 3. Diss ipa t ive  coeff icient  
of temperature field as a func- 
tion of P6clet number. 
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Fig. 4. Mixed two-point  t h i r d - o r d e r  co r r e l a t i on  coefficient  of ve loci ty  and t e m p e r a t u r e  
for U = 8  m / s e c .  

Fig. 5. Diffusion coefficient  of t e m p e r a t u r e  field and F 2 as functions of l~c l e t  number .  

The exper iment  was p e r f o r m e d  for  the s imples t  f o r m  of homogeneous nonisotropic  turbulence  - a x i s y m -  
me t r i c  turbulence.  The r e s u l t s  of this exper iment  for the c h a r a c t e r i s t i c s  of the veloci ty  field a r e  given in [3]. 
A uniform t e m p e r a t u r e  dis tr ibut ion was obtained by using a s c r e e n  with a 40 • 40 m m  squa re  mesh  made of 
Constantan w i r e  and heated by an e lec t r ic  cur ren t .  The m e a n - s q u a r e  value of the t e m p e r a t u r e  fluctuations in 
the working region was 0.2-0.3~ The exper iment  was p e r f o r m e d  with s tandard  appara tus  made by the DISA 
company (hot-wire a n e m o m e t e r s  with h igh-pass  and low-pass  f i l t e r s ,  l i n e a r i z e r s ,  an effect ive value vo l tmete r ) ,  
r e s i s t a n c e  t h e r m o m e t e r s ,  and appara tus  to t r a n s f o r m  and feed analog signals  into an analog computer .  The 
appara tus  is desc r ibed  in detail  in [4]  

It follows f r o m  Eqs. (9) and (10) that  the exper imen ta l  de terminat ion  of STDIS and STDIF r e q u i r e s  the 
m e a s u r e m e n t  of two-point  t e m p e r a t u r e  and veloci ty  co r re l a t ion  functions in th ree  d i rec t ions  and the ca lcu la -  
tion of app rop r i a t e  de r iva t ives  up to and including the fourth o rde r .  To avoid r epea ted  ca l ibra t ions  of the ap-  
para tus  the no rma l i zed  co r r e l a t i on  functions,  that  is ,  the co r re l a t ion  coeff ic ients ,  w e r e  measu red .  In m e a s u r i n g  
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the t r a n s v e r s e  co r r e l a t i on  coe f f i c i en t s , t r ansduce r s  w e r e  placed at  two points in space  and one of them was  
displaced in the ~ 2 and ~ 1 d i rec t ions  ( t r ansve r se  coordinates) .  The initial d is tance between t r a n s d u c e r s  was 
m e a s u r e d  with a mic roscope .  Informat ion on veloci ty  and t e m p e r a t u r e  f luctuations was fed into the analog 
compute r  au tomat ica l ly  for  the calculat ion of the co r respond ing  cor re la t ions .  The hypothesis  of " f rozen  tu rbu-  
lence~ was used to ca lcu la te  the longitudinal co r r e l a t i on  coeff ic ients  Ptt '  (~ I, ~ 2); i .e . ,  the s p a c e - t i m e  coef -  
f icients  P t t '  (~', ~ 2) r a t h e r  than the spa t ia l  coeff icients  we re  measu red .  The s tep  in the longitudinal coordinate  

was ass igned  by using a sampl ing  genera to r  ~l =-~U = UI~, where  f is the f requency of the sampl ing  and ~ i s t h e  
f 

di f fe rence  in t ime .  For  a m o r e  accu ra t e  m e a s u r e m e n t  of  two-point  t e m p e r a t u r e  co r r e l a t ions  the a m p l i t u d e -  
f requency and phase  c h a r a c t e r i s t i c s  of the r e s i s t a n c e  t h e r m o m e t e r s  we re  flattened. 

The m e a s u r e m e n t  of  two-point  c r o s s - c o r r e l a t i o n  coeff ic ients  Pnltt$(v) is an In teres t ing  p rocedura l  
p rob l em,  s ince in this  e a s e  the ho t -wi re  a n e m o m e t e r  output s ignal  depends on both the t e m p e r a t u r e a n d v e l o c i t y  
f luctuations.  The output s ignals  of a ho t -wi re  a n e m o m e t e r  and a r e s i s t a n c e  t h e r m o m e t e r  with the i r  t r a n s d u c e r s  
located in the immedia te  vicini ty  of one another  have the f o r m  l 1 = a u l -  fit +m,  l 2 = Tt +k, 13 = a u l  +m,  where  l 1 
is the ho t -wi re  a n e m o m e t e r  s ignal  in a non i so thermal  flow, l I is the r e s i s t a n c e  t h e r m o m e t e r  s ignal ,  l 3 is the 
ho t -wi re  a n e m o m e t e r  s ignal  in an i so the rma l  flow, and ~ ,  fi, 7 a r e  sens i t iv i ty  coeff ic ients ;  m and k a r e ,  r e -  
spec t ive ly ,  the ho t -wi re  a n e m o m e t e r  and r e s i s t a n c e  t h e r m o m e t e r  noise.  If it is a s s u m e d  that the noise and 
useful s ignals  a r e  not co r r e l a t ed ,  the m e a s u r e d  co r re l a t ion  coeff icient  can be wr i t ten  in the f o r m  

Preens Pu,u(z) - -  pt~t(~) 

i / i i _ =  = (~i_k=) 1---~-- 13]/- ~- 
= p,,,u~ - -  ]/-~/~, 7~= - -  ,o.t~-~ l / - -  

i .e. ,  

1/77 1/-77- 

For  a l a rge  s igna l - to -no i se  ra t io  the effect  of  ins t rument  noise  can be neglected.  
can be r ewr i t t en  in the f o r m  

Then the preceding  re la t ion  

/ -~ / 

P~,tt(z) ~ Pmeas ==:~=- -i-Pm(~) I V- l~ / --=--ll - 1. a3) 

An ext ra  m e a s u r e m e n t  of 0 t~t(~) is pe r fo rmed  to calcula te  p ultt(T ~ In doing this only the output signal of the 
r e s i s t a n c e  t h e r m o m e t e r  is p rocessed .  The ex t ra  m e a s u r e d  function pt2t(T) co r re sponds  to the function ap-  
pear ing  in Eq. (13) if the r e s i s t a n c e  t h e r m o m e t e r  and the ho t -wi re  a n e m o m e t e r  r ep roduce  the t e m p e r a t u r e  
f luctuations s p e c t r u m  identically.  The extent of the reproduct ion  of the f luctuations s p e c t r u m  was es t imated  by 
the a g r e e m e n t  of the functions Ptt(T) m e a s u r e d  by the ho t -wi re  a n e m o m e t e r  and the r e s i s t a n c e  t h e r m o m e t e r .  
Agreemen t  was achieved by flat tening the a m p l i t u d e - f r e q u e n c y  and phase  c h a r a c t e r i s t i c s  of  the r e s i s t a n c e  
t h e r m o m e t e r  and the ho t -wi re  anemomete r .  

The der iva t ives  of the cor re la t ion  functions were  calcula ted by the numer i ca l  differentiat ion fo rmulas  for  
four equally spaced  points.  The volume of information over  which the ave rag ing  was p e r f o r m e d  was chosen so 
that  the s ta t i s t i ca l  e r r o r  of the calculat ion of a der iva t ive  was no m o r e  than 5%. As a ru l e ,  f rom 105 to 2.105 
sampl ings  were  requ i red .  The t i m e  s tep  was se lec ted  accord ing  to the width of the signal  spec t rum.  

The exper imenta l  r e s u l t s  a r e  given in Figs.  1-5. The co r re l a t ion  coeff icients  we re  m e a s u r e d  at 16 points,  
which was sufficient  for  the calculat ion of de r iva t ives  with r e s p e c t  to ~ up to axed including the fourth o rde r .  
Using the values  obtained for  D t and the r o o t - m e a n - s q u a r e  values  of the t e m p e r a t u r e  f luctuations,  the values of 
the m i c r o s c a l e  of the t e m p e r a t u r e  field w e r e  calcula ted:  

V-F 
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This c h a r a c t e r i s t i c  is shown in Fig.  1. The f igure  a lso  shows the cu rve  for  the m i c r o s c a l e  of  the veloci ty  
field 

q 
~ . =  D~/~. 

taken f r o m  [3]. It should be  noted that  the r a t io  of the squa re s  of the m i c r o s c a l e s  of  the veloci ty  and t e m p e r a -  
lu re  f ields is p rac t i ca l ly  constant ,  which follows, in pa r t i cu l a r ,  f r o m  the exact  solut ions of  yon B24rm~n and 
Howarth [5] and C o r r s i n  [1] for  i so t ropic  fields.  

F igu re  2 shows the range  of var ia t ion  of m i c r o s c a l e  Reynolds and l~c l e t  number s :  B~ =qAu/V ,  1:~ = 

qXt/x. 
The cu rve  of Fig. 3 shows that  STDIS is a function of the IMclet number  and that  the values of this  func- 

t ion a r e  v e r y  fa r  f r o m  the value STDIS=64-3 obtained for  P~<<I,  which c l e a r l y  is due to the lack of isotropy.  
The a c c u r a c y  of the calculat ion of  the  s ta t i s t i ca l  coeff icient  STDIS is c h a r a c t e r i z e d  by  a m e a n - s q u a r e  e r r o r  of  
12%. The advantage of exp res s ing  the e r r o r  in this  way  is that  the m e a n - s q u a r e  e r r o r  has a quite def in l tevalue  
of the confidence coeff icient  of  0.68, and twice  the m e a n - s q u a r e  e r r o r ,  a value of 0.95. Keeping in mind the 
r ange  of tMclet nu m ber s  involved in the p re sen t  exper iment ,  the exper imenta l  r e s u l t s  a r e  extended only to a 
ver i f ica t ion  of Eqs.  (8}, (9fl, and (10}. 

We calcula ted  the m a c r o s c a l e  I~ of the t e m p e r a t u r e  field by using the value of the vor t l c i ty  D t and the 
magni tudes of the f luctuations of ve loc i ty  q~ and t e m p e r a t u r e  ~9. F igure  1 shows L t and the m a c r o s c a l e  of  the 
veloci ty  field 

L~ = q3 
vD~ 

as functions of the flow veloci ty.  The f igure  shows that  the m a c r o s c a l e s  inc rease  with increas ing  flow veloci ty ,  
approaching ce r t a in  a sympto te s ,  while the ra t io  of the sca l e s  r e m a i n s  p rac t i ca l ly  constant .  This  r e su l t  is a lso  
known as  a consequence of the laws of degeneracy  Of tsot roplc  turbulence  for v e r y  l a rge  Reynolds and l ~ c l e t  
number s  (cf., e .g . ,  Kolmogorov  [6] and C o r r s i n  [1]). 

The t h i r d - o r d e r  de r iva t ives  of the co r re l a t ion  function ultt~ mus t  be  de te rmined  to ca lcula te  the coeff i -  
cient  STDIF. If we cons ider  the comple te  e x p r e s s i o n  for this  ope ra to r  in components ,  it becomes  c l ea r  that  a 
d i rec t  m e a s u r e m e n t  of it using the appara tus  ment ioned above is imprac t icab le .  To s impl i fy  the ope ra to r  

0 A~ u/ t '  )o 
- -  O~j 

we used the approx ima te  express ion  of a homogeneous co r re l a t ion  t enso r  of the f i r s t  r a n k  for c lose ly  spaced  
points given in [7]: 

ui tt' -- qt2 
Vg 

.( 1 ~(,) ) 
- -  - 6 -  / r  ~' 

UmUn ; r e = l ,  2, 3; n = l ,  2,3; K .... = - - I  

-5- q~ 

5 q}~ ~ ~}? -" " 

By using this  exp res s ion  the coeff icient  (10) can be wr i t t en  in the f o r m  

SrmF = T q . . . .  = 12 ] /3  . . . . . .  
• D~o n Kll (-- h~ptr)~ -:o 

This coeff icient  was de te rmined  by m e a s u r i n g  the two-point  co r re la t ion  coefficient  p ultt, (~ 1) in addition to the 
p rev ious ly  de te rmined  quanti t ies.  

In o rde r  to do this  two t r a n s d u c e r s  w e r e  placed at a working point in ~ s p a c e  with coordinates  (0, 0, 0). 
One of the t r a n s d u c e r s  was par t  of  the r e s i s t a n c e  t h e r m o m e t e r  s y s t e m  and was  sens i t ive  only to t e m p e r a t u r e  
f luctuations.  The t r ansduce r  w i r e s  (5g for  the ho t -wi re  a n e m o m e t e r  and 2p for the r e s i s t a n c e  t h e r m o m e t e r )  
we re  located at a d is tance of 200 g ,  i .e . ,  p rac t i ca l ly  at  the point, s ince ,  for  example ,  Pu~u,v--0.99 for  s ~ =~ 2= 
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0.2 ram. The simultaneous record ing  of the output signals of the t h e r m o m e t e r  and the hot -wire  anemomete r  
a re  n e c e s s a r y  for the calculat ion of pultt(~) by the method descr ibed  above. The information f rom the t he r -  
momete r  and the ho t -wi re  anemomete r  was fed into the computer  through two channels and the quantities 
appear ing in Eq. (13) we re  calculated.  The r e su l t s  of the calculat ions were  pr inted out. For  example,  Fig. 4 
shows the cor re la t ion  coefficient  puitt ' (~ 1) for  UI=8 m / s e c .  After determining Pul t t ' ,  the th i rd  der ivat ive  with 
r e s p e c t  to ~ 1 was computed. F igure  5 shows the r e su l t s  of the calculation of STDIF with a mean- squa re  e r r o r  
of 12%. It is c l ea r  that this coeff icient  is a rapidly  varying function of the P4clet number.  Keeping in mind the 
calculated values of STDIS (PL), the function (8) can be constructed.  This function is  shown in Fig. 5. The 
f igure shows the asymptot ic  value obtained analyt ical ly for  uniform isotropic  fields. As is c lea r  f rom the 
f igure the function F 2 dec reases  with increas ing PL. One can assume that F 2 tends to approach an asymptot ic  
value. However,  in con t ras t  with the corresponding function for the veloci ty  field (cf. [3]) appreciably l a rge r  
values of R L than a re  r eached  in the exper iment  under considerat ion a re  r equ i r ed  to ve r i fy  the re la t ion  

lim Fo -~" 16 V3 
~L~ ~ 5 (14) 

with cer ta inty .  We note,  however,  that it is hardly possible to r each  values of R L g rea te r  than 10 4 under labo- 
r a t o r y  conditions of degenera te  turbulence.  The re fo re ,  on the basis  of the r e su l t s  p resented  above we assume 
that Eq. (14) is actually sat isf ied for a uniform t em p e ra tu r e  field. 

N O T A T I O N  

~2 mean square  of t empe ra tu r e  fluctuations; v,  kinematic viscosi ty;  ~4, the rmal  diffusivity; ~, separat ion 
vector  of two points; ~ ,  Laplacian opera tor  in ~* space; ~ =v/~, Prandtl  n u m b e r ; - ~ 2 = ~ ,  kinetic energy of 
turbulence;  U, longitudinal flow velocity;  Ru=Ru(~-~ =u(x) .  u(x +~-~, spatial  co r re la t ion  of veloci ty  fluctuations. 
Indices: *, isotropy;  0 ,~=0~ 
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